Professor Reimar Seltmann holding a pegmatite specimen from the Ehrenfriedersdorf tin-tungsten deposit in Erzgebirge
A 7.5 million euro grant under the EU’s Horizon2020 scheme has kick-started an ambitious project to support the sustainable exploitation of ore minerals in Europe
The Museum’s expertise in mineral characterisation will play a key role in the industry-driven project
which targets many elements used in our hi-tech society
The Flexible And Mobile Economic (FAME) processing technologies project aims to improve the efficiency and sustainability of ore recovery from low grade mineral deposits
FAME targets e-tech elements - those that are crucial to the development of emerging technologies but difficult or expensive to extract or process
To make the recovery of these elements economically viable would unlock a vast potential resource and stimulate investment in the European mining sector
There are 20 European members in the FAME consortium
including small and medium-sized mining companies
research institutions and communication experts
The Museum’s ores and facilities teams will bring unique expertise to the project
describing the properties of ore minerals and defining the conditions required for profitable mining
Prof Reimar Seltmann, Head of the Museum’s Centre for Russian and Central EurAsian Mineral Studies (CERCAMS) team and FAME collaborator
The FAME project will focus on skarn (calcium-bearing silicate rocks)
pegmatite (igneous rocks with large crystals) and greisen (highly altered granite or pegmatite) ores found in Europe
The selected deposits of these types show a diverse range of ore minerals and contain a significant volume of valuable by-product elements
Microscope view of vein ore containing indium and tin from Geevor Tin Mine
Tin is alloyed with lead to make solder and used to coat other thin metals to prevent corrosion.Tin and niobium are used for wires in superconducting magnets for particle accelerators like the Fermi National Accelerator Laboratory (pictured)
Image © Fermilab/Reidar Hahn.Tungsten ore from Carrock Fell
Tungsten is extremely hard and hypoallergenic
making it particularly suitable for jewellery
fluorescent lighting and in detectors for nuclear physics.Tungsten is used in electronics
rocket nozzles and other high temperature applications
as it has the highest specific heat capacity of any solid element
It also has applications in medicine.Lithium is used in batteries
like the National Ignition Facility (pictured)
Image © Lawrence Livermore National Laboratory
Licensed under CC BY 3.0.As well as tin and tungsten
These e-tech elements have wide applications
but are all considered essential for the sustainable development of technology in the future
There is no single solution for ore extraction
Each element requires a specific treatment
structure and relationships with other minerals
Scientists in the Museum’s Economic and Environmental Mineralogy Division have a unique and world-renowned expertise in ore mineralogy and the team will play a major role in determining each element’s requirements for profitable mining
FAME will use this understanding to develop extraction processes that take into account chemical and physical relationships between elements and minerals
Ores that grow alongside other minerals can often be recovered by grinding and gravity or magnetic separation
If metals occur as individual atoms within a crystal lattice a more complex and expensive high pressure autoclave technique is required
in which different melting temperatures are used to separate materials
A growing sustainable field in ore extraction is bioleaching
in which bacteria are used to target and liberate precious elements in ore deposits
But these methods are still far from perfect
FAME will take important steps towards improving our understanding of ore minerals
by funding the development of more efficient
environmentally friendly and cost-effective extraction processes
It will also create public awareness of raw materials extraction and the potential for sustainability
which will ultimately stimulate investment in the European mining sector
One of the key successes of FAME has been the creation of a pan-European network of mining companies
research institutions and communication specialists
The team’s ambitious proposal was supported by their successful involvement in two previous projects: Geobiotechnological treatment processes for industrial raw materials of non-sulphide ores (GAIN), funded by the German Ministry of Education and Research, and Indium - from source to sink
a UK-based project supported by the Natural Environmental Research Council (NERC)
where a lithium mica (Zinnwaldite) is found
The Museum’s CERCAMS team was a partner in both of these projects and has a long-standing relationship with Dr Wolfgang Reimer of Geokompetenzzentrum Freiberg (GKZ), manager of the FAME consortium, and Dr Chris Broadbent of Wardell Armstrong Ltd
CERCAMS became a member of GKZ in 2013 and used its connections with partners across Europe to organise Horizon2020 planning meetings
This supported GKZ in building a formidable and truly pan-European team for the FAME proposal
a team which is working hard together towards a sustainable supply of raw materials for the future
Experts from the Museum’s Centre for Russian and Central EurAsian Mineral Studies play a key role in the FAME project
SustainabilityWe are exploring new sources of food
predicting the spread of disease and finding scarce elements
CERCAMSResearching the gedynamics and metallogenesis of the former Soviet Union (FSU) and neighbouring territories
Economic and environmental earth sciences researchResearching the formation
discovery and sustainability of Earth's resources
Ores collectionThe collection contains over 15,000 specimens and is a valuable resource for the field of economic geology
Map
Map
We use cookies to give you the best online experience
We use them to improve our website and content
and to tailor our digital advertising on third-party platforms
You can change your preferences at any time.